

Believe in the Math Behind Air Source Heat Pumps 2022 Morning Brief Series: April

- COVID-19 Health & Safety Reminder
- Believe in the Math Behind Air Source Heat Pumps
- Q&A

COVID-19 Health & Safety Reminder

- Filed health and safety plans should continued to be followed until a new plan is submitted and approved by the Program
- Contact your Field Energy Specialist (FES) if you have questions

John Carroll Residential Program Manager

Today's Speaker

Paul Svoboda Crescent Parts & Equipment Service and Support Manager

BELIEVE IN THE MATH!

HEATING SOURCES AND FUEL PRICES – ECONOMICS OF BEST OPTIONS

Air Source Heat Pumps Answers for Today's World!

SOME BASIC CONVERSIONS.

- EER = SEER × .875
- SEER = EER / .875
- HSPF / 3.414 = COP
- EER / 3.414 = COP
- KWH = 3414 BTU
- What does COP 3.0 mean?
 - IkWh = 3413 Btu
 - IkWh x 3.0 COP = 10,239 Btu/kWh

WHAT NEEDS TO BE CONSIDERED?

- Cost of installation
- Cost of operation
- Comfort
- Integration with cooling and ventilation systems
- Multiple zones with different heat delivery mechanism
- Always compare apples to apples

DISCUSS AND PRIORITIZE WITH THE CUSTOMER

- What is the installed cost?
 - How does cost fit with the budget/mortgage?
- What fits the customer's lifestyle?
- Are there environmental concerns and what are they?
- What fuel types are available?
- What are the rates in your area?
 - Today and in the future?

WHAT IS DIFFICULT TO VERIFY?

- Future rates for fuel
- Efficiency of delivery system
 - Duct leakage
 - Duct runs outside thermal envelope
- Heating load
 - Thermal envelope impact easier to verify
 - Occupant behavior impact tough to verify

WHAT IS NEARLY IMPOSSIBLE TO VERIFY?

- Radiant vs. forced air comfort
- Economic benefits of modulating systems
- Non-comfort benefits
 - Allergies
 - Aesthetics
- Environmental concerns
- Customer fears

WHAT IS EASY TO VERIFY?

- Efficiency of the unit producing the heat
- The current cost of the fuel
- The Btu content of the fuel

DEFINITIONS AND STANDARDS

 BTU (British Thermal Unit) - The amount of energy required to raise I pound of water I° Fahrenheit

Electricity	1 kwh = 3413 BTU		
Natural Gas	1 Therm = 100,000 Btu		
Liquid Propane	1 Gallon = 91,600 Btu		
Fuel Oil	1 Gallon =139,600 Btu		
Wood	1 Cord = 22,500,000 Btu		
Wood	1 Ton Pellets = 16,500,000 Btu		
Corn	1 Pound Shelled = 6,970 Btu		
	1 Bushel Shelled = 390,320 Btu*		

* Assumes a moisture content of 15.5%

CALCULATION FOR COMPARING APPLES TO ORANGES

Heat content per unit of fuel

- ÷ Cost per unit of fuel
- = Btu available per \$1
- Btu available per \$1
- X Efficiency of heater
- = Btu available for each \$1 spent

ELECTRIC RESISTANCE

Heat content per kWh of electricity

Price per kWh of electricity

Btu available for each \$1 spent

3,413 Btu

÷ \$0.115

29,678 Btu/kWh of Electricity

Efficiency of boiler or furnace

Actual Btu usable in the home

29,678 Btu/\$

x 99% Efficiency (.99)

29,381 Btu Delivered/\$

EXAMPLE - NATURAL GAS

Heat content per therm of nat gas

Price per therm of natural gas

Btu available for each \$1 spent

100,000 Btu

÷ \$1.30 (US Bureau of Labor Stats)

76,923 Btu/Therm Nat Gas

83,333 Btu/\$

Efficiency of boiler or furnace

Actual Btu usable in the home

x 93% Efficiency (.93)

71,538 Btu Delivered/\$

EXAMPLE - PROPANE

Heat content per gallon of propane

Price per gallon of propane

Btu available for each \$1 spent

91,600 Btu

÷ \$3.00 p/gal

30,533 Btu/Gal of Propane

30,533 Btu/\$

Efficiency of boiler or furnace

Actual Btu usable in the home

x 93% Efficiency (.93) 28,396 Btu Delivered/\$

AIR SOURCE HEAT PUMPS

- Rated in COP (Coefficient of Performance) (HSPF / 3.414)
- What does COP 3.0 mean?
 - IkWh = 3413 Btu
 - IkWh x 3.0 COP = 10,239 Btu/kWh
- 3 times the heat for the same amount of energy!

EXAMPLE - AIR SOURCE HEAT PUMP

Heat content per kWh of electricity3413 BtuPrice per kWh of electricity÷ \$0.115

Btu available for each \$1 spent

29,678 Btu/kWh

Efficiency of Air Source HP

Actual Btu usable in the home

29,678 Btu/\$

x 2.93 COP (10 HSPF / 3.413)

86,957 Btu Delivered/\$

EXAMPLE – DUCTLESS HEAT PUMP

Heat content per kWh of electricity

Price per kWh of electricity

Btu available for each \$1 spent

3413 Btu

÷ \$0.115

29,678 Btu/kWh

29,678 Btu/\$

Efficiency of Air Source Heat Pump

Actual Btu usable in the home

x 3.95 COP (13.5 HSPF / 3.413

117,376 Btu Delivered/\$

HOW DO THEY STACK UP?

- Natural gas
- Propane gas (L.P.)
- Fuel oil
- Electric resistance
- Wood (corded)
- Wood pellets
- Corn (shelled)
- Heat Pump (Air Source) . .
- Ductless Heat Pump (Air Source)

- 71,538 Btu per dollar
- 28,396Btu per dollar
- 34,987 Btu per dollar (\$3.99 p/gal)
- 29,678 Btu per dollar
- 60,237 Btu per dollar (\$375 p/cord)
- 66,000 Btu per dollar (\$250 p/ton)
- 60,234 Btu per dollar (\$6.48 p/bushel)
- 86,857 Btu per dollar
- II7,376 Btu per dollar

NOT YOUR GRANDFATHERS HEAT PUMP.....

- Auxiliary Heating
- Timed Defrost
- Cap tube metering
- Recip compressors
- Fan motors
- Refrigerant flow
- Sizing theory (sizing for non dominate load)

HEAT PUMP DEVELOPMENTS: 1960-2020

Issue	Old School	Sort of New School	New School
Auxiliary Heat Control	Thermostat	Outdoor Lockout	Discharge Air Temp
Defrost Control	Timed	On Demand	On Demand / No Auxiliary
Refrigerant Metering	Capillary Tube	Fixed / TXV	EEV
Compressor Efficiency	Hermetic / Piston	Scroll / Two Stage	Inverter
Fan Motors	Belt Driven	Direct Drive / Shaded Pole	ECM *(with good duct design, or ductless)
Refrigerant Flow	fixed flow	Digital / Unloading	Enhanced Vapor Injection Technology

COMPONENTS OF A GOOD INSTALLATION

I. Manual J heating load calculation

.

- 2. A good duct design (Manual D) if applicable
- 3. Size your equipment by Thermal Balance Point

NO!!!

Air Conditioner or Heat Pump SIZING CHART

TRIM OUT HOLES VERY CAREFULLY, CUTTING ON THE DOTTED LINES, THEN FOLLOW INSTRUCTIONS SHOWN BELOW

NOUSE THE IN A TICHE, USELS UNE SIZE UNIT IS GREE. "If out is not sumilable - set the homeowner where a suit would be if there was one.

- Sizing single and two stage heat pumps up to %125 of air conditioning capacity.
- Sizing inverter heat pumps. Size for dominant load with dehumidification and balance point considered
- Many ductless systems have full heating capacity at 5 degrees outdoor temperature

- You've carefully thought out all the angles
- You've done it a thousand times
- It comes naturally to you
- You know what you're doing, it's what you've been trained to do your whole life
- Nothing could possibly go wrong, right?

Thank you for your time!

Saving Energy Today & Tomorrow

By B. Paul Svoboda Service and Support Manager / Crescent Parts and F

Service and Support Manager / Crescent Parts and Equipment

